
lable at ScienceDirect

Anaerobe 15 (2009) 26–35
Contents lists avai
Anaerobe

journal homepage: www.elsevier .com/locate/anaerobe
Microbial host interactions

Foodborne Salmonella ecology in the avian gastrointestinal tract

K.D. Dunkley a,1, T.R. Callaway b, V.I. Chalova a,2, J.L. McReynolds b, M.E. Hume b, C.S. Dunkley a,3,
L.F. Kubena b, D.J. Nisbet b, S.C. Ricke a,*

a Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
b USDA-ARS, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77843, USA
a r t i c l e i n f o

Article history:
Received 13 March 2008
Received in revised form
29 May 2008
Accepted 30 May 2008
Available online 4 June 2008

Keywords:
Salmonella
Avian gastrointestinal tract
Ecology
Pathogenesis
* Corresponding author. Current address: Departm
Food Science, and Center for Food Safety, IFSE, Uni
Young Ave., Fayetteville, AR 72704-5690, USA. Tel.: þ
575 6936.

E-mail address: sricke@uark.edu (S.C. Ricke).
1 Current address: Department of Natural Scienc

Albany, GA 31705, USA.
2 Current address: Departments of Poultry Science

for Food Safety, IFSE, University of Arkansas, Fayettev
3 Current address: Department of Poultry Science

Tifton, GA 31793, USA.

1075-9964/$ – see front matter � 2008 Elsevier Ltd.
doi:10.1016/j.anaerobe.2008.05.007
a b s t r a c t

Foodborne Salmonella continues to be a major cause of salmonellosis with Salmonella Enteritidis and
S. Typhimurium considered to be responsible for most of the infections. Investigation of outbreaks and
sporadic cases has indicated that food vehicles such as poultry and poultry by-products including raw
and uncooked eggs are among the most common sources of Salmonella infections. The dissemination and
infection of the avian intestinal tract remain somewhat unclear. In vitro incubation of Salmonella with
mammalian tissue culture cells has shown that invasion into epithelial cells is complex and involves
several genetic loci and host factors. Several genes are required for the intestinal phase of Salmonella
invasion and are located on Salmonella pathogenicity island 1 (SPI 1). Salmonella pathogenesis in the
gastrointestinal (GI) tract and the effects of environmental stimuli on gene expression influence bacterial
colonization and invasion. Furthermore, significant parameters of Salmonella including growth physi-
ology, nutrient availability, pH, and energy status are considered contributing factors in the GI tract
ecology. Approaches for limiting Salmonella colonization have been primarily based on the microbial
ecology of the intestinal tract. In vitro studies have shown that the toxic effects of short chain fatty acids
(SCFA) to some Enterobacteriaceae, including Salmonella, have resulted in a reduction in population. In
addition, it has been established that native intestinal microorganisms such as Lactobacilli provide
protective mechanisms against Salmonella in the ceca. A clear understanding of the key factors involved
in Salmonella colonization in the avian GI tract has the potential to lead to better approach for more
effective control of this foodborne pathogen.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Salmonella nomenclature

Salmonella are gram-negative bacteria consisting of non-spore
forming bacilli and are a member of the family Enterobacteriaceae.
The nomenclature of Salmonella is quite complex and is based on
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both serotype and subspecies names. For example, Salmonella
enterica subspecies enterica serotype Enteritidis is shortened to
Salmonella serotype Enteritidis or Salmonella Enteritidis [1].
Salmonella can be further subdivided onto biotype and phase type
with biotype being a biochemical variation between two microor-
ganisms of the same serotype, whereas the phase type is based on
the differences in susceptibilities of two microorganisms of the
same serotypes to a lytic bacteriophage [2,3]. Salmonella are also
classified by three distinct types of antigens including somatic O,
flagella H, and capsular Vi antigens. Antigens have been used to
isolate and identify more than 2500 serotypes of Salmonella [4].
There are two species of Salmonella, namely S. bongori and
S. enterica. S. enterica is divided into six subspecies including
enterica, salamae, arizonae, diarizonae, houtenae, and indica. The
most common O-antigen serogroup within S. enterica subspecies
are A, B, C1, C2, D, and E strains. This serogroup is numerically the
most significant and causes approximately 99% of Salmonella
infections in humans and warm-blooded animals [5].
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1.2. Epidemiology

Foodborne salmonellosis is responsible for over 600 deaths and
1.4 million illnesses in the US annually [6] and the costs for medical
care and loss of productivity can range anywhere from $464 million
to $2.3 billion [7]. In 1999, 22% of all culture-confirmed Salmonella
infected individuals were hospitalized [8]. Salmonella have also
been commonly associated with foods such as raw meat, poultry,
eggs, and dairy products and cause a large fraction of the food-
related deaths in the US annually [9]. In Europe, the number of
human cases was reported to be greater than 100,000 in 1997 [10].
In the past few years, the incidence of salmonellosis has shown
a significant decrease across Europe (73,000 cases in 2001) and in
the US since 1996 [10,11]. Approximately 60% of human cases
reported to the CDC (in 2001) were caused by four serotypes
including S. Typhimurium, S. Enteritidis, S. Newport, and S. Hei-
delberg [11]. Salmonella cases associated with certain serotypes,
however, increased in 1999 and were accompanied by decreases in
Campylobacter jejuni, Shigella, and Escherichia coli O157:H7 [8]. In
2004, new incidences of S. Newport and S. Javiana increased up to
41% and 167%, respectively, over the 1996–1998 baseline period
[12].

2. Salmonella in poultry

A variety of investigations of outbreaks and sporadic cases have
indicated that food vehicles identified as the most common source
of Salmonella infections are poultry and poultry by-products,
including raw and uncooked eggs [13–19]. Salmonella cause
asymptomatic intestinal infections in birds but acute outbreaks
exhibiting clinical disease along with high levels of mortality occur
in chicks younger than 2 weeks old [20–22]. Egg shells can be
contaminated with Salmonella as a result of intestinal passage and
the ability to penetrate into the avian egg [23]. Pullorum disease, for
example, is caused by S. Pullorum and is spread from an infected
parent bird via the egg to the chicken. While clinical signs are
variable and non-specific, the outcome is an excessive number of
dead-in-shell chicks and deaths shortly after hatching. Salmonella
can be highly invasive in laying hens leading to systemic infections
that can potentially be deposited in the internal contents of eggs by
transovarian transmission following colonization of the intestinal
tract [24–30]. S. Enteritidis, in particular, has shown a greater ability
to colonize the vaginal epithelium of laying hens compared to other
serotypes [31]. Birds that are asymptomatic carriers may facilitate
the spread of disease infections among flock [32,33]. S. Enteritidis
contaminated eggs have proven to be extraordinarily difficult to
detect internally and unless bacterial populations exceed log10 9.0
per egg, no distinct changes in appearance or odor are usually
observed [34]. S. Gallinarum is excreted in the feces of infected
birds and can persist in feces for at least 1 month and longer in
carcasses.

Even though Salmonella pathogenesis has been well character-
ized in the mammalian model, there is limited information on
specific mechanisms in the avian species. Light and electron
microscopic examinations of intestines taken from chickens
experimentally infected with various Salmonella species demon-
strated similar cellular responses to these organisms, including the
influx of heterophils and macrophages to the luminal surface of the
intestine [35,36]. Heterophils are considered to be the avian
counterpart to mammalian neutrophils in their action as tissue
phagocytes, and their importance to host defense against bacterial
infections is well known [37]. The capabilities of the heterophils
and avian macrophages to kill Salmonella have been demonstrated
through bactericidal assays performed in vitro [38]. If Salmonella are
not cleared by the immune system, colonization of the intestine
occurs, and they are able to move through and colonize other cells
by inducing them to take up the bacteria [39]. Studies have shown
that at least Salmonella used to experimentally infect birds will
migrate from the intestine to the liver, spleen, and ovaries
[25,27,29,30,36,40,41]. This indicates that the pathogenesis of
Salmonella in experimental avian model infections involves
a sequential dissemination in the internal organs that is similar to
what has been established in the mammalian model.

3. Microbial ecology in the avian GI tract

3.1. Avian GI tract and indigenous microflora

The lower gastrointestinal (GI) tract of most animal species
including poultry is normally populated by large numbers of
microorganisms [42], and through various competitive niches and
virulence capabilities, some are able to survive. The capabilities of
microorganisms associated with the mucosa of the GI tract to
withstand the flow rates of food material is essential for the
development of protective mechanisms such as surface mucus
colonization [43], deep mucus, development of specialized inser-
tional structures [44], and crypt association [45] by specific adhe-
sions [46]. Changes in the passage rates that are representative of
dilution rates can alter the limiting nutrients and therefore could
ultimately affect microflora composition in the GI tract ecology.

Historically, the microbial composition of the GI tract of avian
species has not been extensively defined compared to what is
known about microorganisms in ruminants [47]. There is the
perception that the role of microorganisms in chickens is not as
important as is the case for ruminants [48]. However, extensive
strict anaerobic metabolism including methanogenesis fermenta-
tion occurs in birds fed a variety of diets [49–52]. The ceca are the
major fermentation sites in the GI tract of chickens and contain the
largest number of bacteria [42,53–55]. Over 200 different bacteria
have been isolated and characterized [56], and these bacteria are
known to be influenced by various factors including diet, health,
and age. However, Zhu et al. [57] indicated that only 10–60% of
microorganisms in the ceca could be propagated using anaerobic
culture techniques.

3.2. Methods for studying avian GI microbial ecology

Continuous culture (CC) techniques historically have provided in
vitro models to study GI tract metabolism and fermentation of
microorganisms [58–64]. A typical CC experiment involves a che-
mostat apparatus that simulates specific GI tract physical and
chemical properties and consists of an afferent inlet which inputs
substrates and buffer and an efferent outlet that facilitates outflow
port of a homogenous mixture of microorganisms, fermentative
metabolites and substrates [65]. The growth of bacteria in CC can
provide a more accurate reflection and simulate conditions that are
closely related to the natural GI ecosystem. Steady state can be
attained and significant parameters can be quantified including
rate of growth, manipulation of nutrient source, pH status and
maintenance energy [58]. This however, depends on how constant
the nutrient flows are in the particular GI tract systems. The flow
rate (passage rate) may vary for different gut systems including
cattle (approximately 80 h) [66], horse (48 h) [67], and chickens
(2.5 h) [68]. Furthermore, flow rates depend on the feed compo-
sition and texture [69].

Experimentally, CC techniques have been used to simulate the
GI tract microenvironment of humans [61,62] and various animal
species including chickens [63,64], pigs [70], and ruminants [58].
Studies which model the human colonic ecology [61] demonstrated
antagonism of indigenous microflora against enteropathogens from
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crude human fecal cultures in anaerobic culture systems. In these
studies, it was observed that five human fecal microorganisms
provided levels of antagonism that mimic the crude fecal flora in GI
tract in the presence of carbon sources such as lactose, sucrose, and
starch that were fermentable only by antagonistic bacteria. The
enteropathogen (S. Typhimurium) was suppressed to a 104 CFU/mL
by 5–7 days post-challenge [61]. Parameters such as competition
for growth-limiting amino acids and microfloral density are known
to contribute to the superior competitiveness of the normal
microflora to outcompete and eliminate pathogens [62,71,72].
Using CC techniques, even small variations in media pH (6.17–7.35)
were shown to influence S. Typhimurium physiology by altering the
bacterial cell parameters [73]. While ammonia release into media
was favored by low pH, the increases in pH resulted in higher cell
protein concentrations, glucose disappearance, and bacterial ATP
yields.

4. Salmonella physiology in the avian GI tract

4.1. Salmonella growth physiology

Under nutrient limiting conditions, bacteria reach stationary
phase of growth rapidly [74]. When this occurs, bacterial replica-
tion ceases and cell density begins to decrease. Historically,
research has shown that transition into a survival mode during
stationary phase is a more physiologically controlled event by
bacteria than previously thought [74,75]. Cessation of growth can
be caused by many environmental factors, including acid pH,
osmotic stress, heat shock, and redox potential [76–80].

Considerable attention has been given to nutrient starvation
with a primary focus on carbon, nitrogen, or phosphorous sources
because these are identifiable with already highly characterized
genetic changes that occur in bacteria including S. Typhimurium
[81]. Ševčı́k et al. [82] demonstrated that under anaerobic condi-
tions when electron acceptors are scarce, the stationary phase of
S. Typhimurium growth may be reached not only by nutrient
deprivation but due to a limited availability of electron acceptors
such as oxygen. When Salmonella became exposed to such condi-
tions upon infection of a susceptible host, they multiplied rapidly
and reached a density of 108 CFU/g cecal content [82].

The utility of animal cell culture has become a popular model for
studying adhesion and penetration through epithelial cells by
Salmonella [83,84]. It has been shown that an adhesion-invasion-
deficient mutant of Salmonella is largely controlled by genetics and
multiple chromosomal loci [85,86]. Invasion is genetically medi-
ated [87] by several invasion genes found on a 40 kb Salmonella
pathogenicity island 1 (SPI 1) located between flhA and mutS
chromosomal genes at centisome 63 on the S. Typhimurium
chromosomes [88]. Rodriquez et al. [89] observed that S. Typhi-
murium incubated in the presence of high osmolarity and low
oxygen for 8 h exhibited reduced hilA expression during the
exponential growth phase. However, at stationary phase (3 h post-
inoculation), there was an apparent increase in hilA expression
most probably due to less optimal growth conditions such as
limited nutrients, low oxygen tension, and other stresses created
after the first 2 h in the medium. Cell-association and invasion of
S. Typhimurium into cultured epithelial cells may also be influ-
enced by short chain fatty acids (SCFA) as a function of both SCFA
concentration and pH of the media [90–92].

4.2. Genetics of Salmonella

The central regulator of stationary phase is expressed by rpoS
[80,93] which is responsible for the induction of a specific subset of
bacterial genes expressed during stress. RpoS is known to be
positively regulated by a starvation specific molecule ppGpp [78]
accumulated as a part of the stringent response. In addition,
induction of sigma factor can alter the efficiency of metabolism
including reduction in cellular concentration of cAMP [94] and
UDP-glucose. RpoS is an alternative sigma factor (ss) (KatF) which
has been demonstrated to be essential for stationary phase stress
response in Salmonella and E. coli and is an important gene regu-
lator in S. Typhimurium [81,95,96]. RpoS encodes an RNA poly-
merase sigma factor (dS or d38) that is known to regulate at least 60
genes in response to environmental signals including various stress
conditions, nutrient limitation, osmotic challenge, acid shock, heat
shock, oxidative damage, redox potential, and growth in stationary
phase [97–102].

S. Typhimurium is an intracellular pathogen, residing in the
macrophages upon infection and can be exposed to a wide range of
antimicrobial effectors including the phagocyte NAD(P)H oxidase
(Phox). An initial oxidative bactericidal phase associated with the
production of superoxide anion and hydrogen peroxide is followed
by bacteriostatic phase where nitric oxide is produced [103]. The
combination of nutrient limitation and stress conditions in the
intracellular environment is probably a stimulus for rpoS induction
[104]. Starvation also increases the intracellular levels of ppGpp
which in turn enhances the level of RpoS [105]. This is evident
because ppGpp-deficient strains fail to synthesize RpoS as cells
enter into stationary phase in a rich medium and under starvation
[105]. The major effects of ppGpp induction are not exerted on rpoS
mRNA abundance or on protein turnover but instead influence
translational efficiency [106].

4.3. Acid tolerance response of Salmonella

Salmonella elicit several strategies to avoid or repair damages
that are caused by exposure to acid stress. In Salmonella, RpoS is
also integrally involved in the development of several low-pH
inducible acid defense systems, collectively referred to as acid
tolerance response (ATR), that expand the range of pH tolerance
[107–111]. There are two major ATR that have been identified and
are based on the particular growth phase in which they become
induced. The first type, the log-phase ATR system, operates during
the exponential growth phase of cells undergoing a rapid transition
to low pH [108]. Over 50 acid shock proteins (ASP) are produced
during this response [112]. The second type of ATR system is known
as a stationary phase ATR and is induced by exposing cells to low
pH during stationary phase [111]. In contrast to the log-phase type
system, it is induced by the onset of the stationary phase regardless
of the pH of the growth. Bearson et al. [113] reported that both ATR
systems in S. Typhimurium are able to protect against the two types
of acid stress including organic (weak acids) and inorganic acids
(low pH). RpoS and Fur are believed to protect against organic acids,
whereas PhoP along with RpoS protect against inorganic acid stress.

Bearson et al. [113] demonstrated that rpoS in S. Typhimurium
encodes for a shock protein (ASP) and its expression is induced 4-
fold by transition from normal to acid conditions (pH less than 4.5).
The importance of this induction has been demonstrated for S.
Typhimurium to initiate and sustain induction of the ATR [110]. It is
a complex adaptive response that induces both an ss-independent
transient ATR which is maximally induced by 20 min of pH 4.4 acid
shock but progressively lost during longer adaptation [114] and
a ss-dependent sustained ATR which can be seen during a longer
period of acid environment of 60–90 min [110].

4.4. Response to short chain fatty acids (SCFA)

SCFA are end-products of microbial fermentation in the GI tract
of humans and animals and include acetate, propionate, butyrate,
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valerate, isovalerate, and isobutyrate [53,115–117]. Previous studies
with four species of birds indicated that metabolizable energy
obtained from total SCFA production was equivalent to 5–15% of the
daily requirement for maintenance [53,118,119]. However, young
chickens do not contain a wide diversity of anaerobic bacteria as
a dominant fraction of the microflora [120], and low concentrations
of acetate (below 70 mmol g�1), propionate (below 8 mmol g�1), and
butyrate (below 24 mmol g�1) are expected during the first week of
life [54,120,121]. In the first 15 days after hatching, the concentra-
tions of SCFA in the young chick’s ceca vary which may explain their
low protective efficiency against pathogen colonization [122]. The
production of SCFA reaches concentrations which are considered
optimal for pathogen exclusion (acetate at 70 mmol g�1; propionate
8 mmol g�1; and butyrate 24 mmol g�1) and stabilizes after chickens
reach 15 days of age [120]. Increases in acetate, propionate, and
butyrate in ceca have been assumed to lead to a decrease in the
viable population of Enterobacteriaceae in ceca of chickens [123].
However, pre-exposure of Salmonella to high levels of various SCFA
(100 mM) at neutral pH may enhance survivability by increasing
acid resistance and stimulating virulence response [124–127].

SCFA can inhibit Salmonella growth when present in the disso-
ciated form. Van der Wielen et al. [123] demonstrated in a batch fed
competitive exclusion (CE) co-culture that acetate, propionate and
lactate inhibited Salmonella growth at pH 5.8, but failed to do so at
neutral pH. At pH 5.8, the total undissociated SCFA were signifi-
cantly higher compared to the dissociated form at neutral pH [128].
At a lower pH (5.8), it is thought that SCFA promote bacteriostatic
action by increasing the concentration of undissociated acids.
Undissociated acids enhance permeability of the cell membrane
[129,130] and cause bacteria to lose energy generating capacity in
the form of ATP, thus compromising replication [130]. While
a bacteriostatic activity was observed on Enterobacteriaceae, the
organic acids did not inhibit beneficial GI tract bacteria such as
Lactobacillus [120]. McHan and Shotts [131] observed toxic effects
of SCFA to some Entrobacteriaceae and in an in vitro study showed
a 50–80% reduction in S. Typhimurium in presence of SCFA.
Conversely, Kwon and Ricke [124] noted that organic acids played
a role in the survivability of acid sensitive pathogens exposed to
reduced pH by induction of ATR which is associated with virulence.
Therefore, the use of organic acids may need to be somewhat
selective and the exposure of the microbial pathogens especially in
the GI tract environment of animals to them must be further
evaluated to ensure that organic acids are not a confounding factor
in their use as antimicrobial agents.
5. Potential for Salmonella control in avian GI tract

5.1. Probiotics

Probiotics are generally referred to as any live microbial feed
supplements that benefit the host animals by largely improving
intestinal microbial balance [132,133]. Intestinal microorganisms
that are recognized as possessing probiotic properties include but
are not limited to Lactobacilli and Bifidobacteria spp. They exhibit
identifiable beneficial effects for the respective host via promotion
of gut maturation and integrity, antagonism against pathogens
(Salmonella) and immune modulation [134–136]. The effects of
probiotics in poultry also include maintaining normal intestinal
microflora by CE, increasing metabolism, decreasing enzymatic
activity and ammonia production, as well as an increase in feed
intake and the neutralization of digestive enterotoxins [137,138].
Therefore, the overall goal of probiotics intervention is to promote
the general growth of healthy microorganisms that are competitive
with or antagonistic to enteropathogens [133].
The application of such probiotics has been referred to as the
Nurmi concept of CE. Nurmi and Rantala [122] were the first to
utilize CE as a viable pathogen-reduction strategy. They demon-
strated that Salmonella colonization in juvenile chickens was
reduced by the administration of a preparation of gut bacteria
originally isolated from healthy adult chickens. Currently, CE
approaches essentially involve pathogen-reduction strategy via
introduction of a (non-pathogenic) bacterial culture to the intes-
tinal tract of food animals resulting in reduced colonization or
decreased populations of pathogenic bacteria in the GI tract
[133,139–141]. Over the past three decades, CE cultures have been
extensively studied in several laboratories [64,70,139,142–144]
with a primary focus on limiting Salmonella colonization in the GI
tract of chickens. There have been several efforts designed to
understand and reduce their microbial complexity, improve their
resistance and identify successful colonization after introduction of
the CE culture [47,70,142,143]. CE cultures in which the bacterial
composition is unknown are termed undefined, while those of
known bacterial composition are referred to as defined CE cultures
[70]. An established and mature GI microbial population theoreti-
cally occupies all available environmental niches nutritionally,
metabolically and physically, making an animal more resistant to
colonization by opportunistic pathogen infections [133].

Van der Wielen et al. [120] reported that in adult chickens the
microbial population becomes more complex, stable, and better
able to resist enteropathogens than their younger counterparts. In
the 1990s, there was considerable progress achieved in developing
cultures maintained in CC which were shown to effectively control
Salmonella colonization when administered to chickens
[139,140,145–147]. The inhibitory mechanism against Salmonella
colonization has been associated with a reduction in cecal pH,
increase in cecal lactic acid and SCFA, competition for attachment
sites, competition for growth-limiting nutrients, production of
antimicrobial compounds, immunomodulation, and synergistic
and antagonistic interaction [61,71,72,128,142,148,149]. It has been
stated that CE should be used as a prophylactic treatment rather
than a therapeutic agent [150] and should originate from the
intestinal content of the animal of interest. For instance, a CE
culture for use in chickens must be derived from healthy chickens,
likewise for pigs [70]. Administration of a bacterial community to
newly hatched chickens can lead to an early colonization of
adherent bacteria on the intestinal mucosal surface forming a mat
of microorganism occupying environmental niches [151–153]. In
the food animal industry, the use of probiotics and CE can be
administered as a synbiotic by combining them with external die-
tary ingredients that will favor the specific growth and establish-
ment of the probiotic bacteria [154,155]. Roller et al. [156]
established that while an inulin-enriched oligofructose dietary
supplement increased the production of interleukin-10 in Peyer’s
patches and secretory immunoglobulin (slgA) in the cecum of rats,
the probiotic mixture (L. rhamnosus and B. lactis) affected the
immune functions only modestly. The combined application of
both supplements resulted in enhanced production of slgA in ileum
and decreased oxidative activity of blood neutrophils. They
concluded that simultaneous administration of probiotics and
selected dietary supplements may have different effects than when
applied separately.

5.2. Prebiotics

Prebiotics can be defined as non-digestible carbohydrate frac-
tions fed in diets that are beneficial to the host by stimulating the
growth of one or more bacteria in the GI tract [157,158]. Prebiotics
(dietary fibers) are predominantly a constituent of plant cell walls
and also consist of non-starch polysaccharides (NSPs) along with
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non-carbohydrate compounds including lignin, protein, fatty acid,
and wax [159]. Upon ingestion, dietary fiber may influence the GI
tract by altering its microbial activities, rate of passage, metabolites,
and digestive efficacy [159,160]. Certain dietary fractions including
polysaccharides have been identified for their potential to be
utilized as prebiotics [161,162], possibly by reducing pH and
increasing VFA concentrations [121,148,163]. Beneficial species of
Lactobacilli and Bifidobacteria that are considered to be inhibitory
towards pathogens are known to be supported by some of these
compounds [157].

Some of the more extensively studied prebiotic sources are
fructooligosaccharide (FOS), oligofructose and inulin [154,155]. FOS
are naturally occurring oligosaccharides that originate from plants
such as onions, wheat, barley, and rye and consist of one to three
fructose residues attached to a sucrose molecule. When fed to
animals, FOS have been shown to impact bacterial populations by
promoting the growth of Lactobacillus [164] and Bifidobacterium
spp. [165]. Bailey et al. [166] demonstrated reduced susceptibility of
broiler chickens to Salmonella invasion after inclusion of FOS in
their diets which was explained by a probable shift in gut micro-
organisms. The efficiency of FOS in the same study was enhanced
by a combination with a protective CE culture which resulted in 3-
fold reduction of S. Typhimurium chicken colonization compared to
chickens given CE alone. Lactobacillus paracasei administered in
combination with FOS resulted in a significant increase of Lacto-
bacillus spp., Bifidobacterium spp., total anaerobes, and total
aerobes, as well as a decrease in Clostridium and Enterobacterium
observed in piglets [167]. In a series of in vitro studies, Donalson
et al. [168,169] demonstrated that a combination of FOS, alfalfa and
grain, incubated with cecal inoculum exhibited a significant
reduction in Salmonella population, while increasing propionate,
butyrate, other SCFA, and lactate. However, in vivo work with laying
hens was less conclusive indicating some adaptation of the cecal
microflora was required [170]. In at least half of the trials, the
S. Enteritidis colonization of ovary and liver of hens fed FOS (0.375%
and 0.750%, w/w) containing diets were reduced compared to hens
subjected to complete removal of feed. Significant decreases in
cecal S. Enteritidis counts were also observed in only half of the
trials. However, no substantial differences in Salmonella coloniza-
tion of hens’ organs were observed due to FOS. Although the
addition of FOS to cereal or high-fiber diets did not improve the
production of the total cecal VFA, hens fed high fiber with or
without FOS yielded greater cecal lactic acid concentrations than
hens subjected to complete removal of feed [170].

5.3. Dietary strategies to limit Salmonella in the avian GI tract

Adding specialized prebiotics may be economically limiting
depending on the cost of the original sources of the compounds
used, so recent research has focused on examining dietary regi-
mens that elicit similar properties. This has been studied in some
detail for certain egg-laying hen management practices in the
poultry industry. In particular, molting diets for layer hens have
been a focal point for development of these types of diets. Natural
molt of hens is associated with the temporary interruption of egg
production. Instead, hens utilize their energy in staying warm and
growing new feathers [171]. Historically, the shortening of the
natural molt and rejuvenation of hen flocks in poultry industry
were achieved by withdrawal of feeds [172]. Feed deprivation was
a procedure employed to achieve a rapid and economical new egg-
laying cycle [173,174] and could last anywhere from 4 to 14 days
[172,175]. However, this method, although possessing several
management advantages, has become less popular due to a variety
of animal and food safety issues [28,29,176–178]. It was suggested
that the avian microbial ecology is altered during dietary stresses
such as feed removal which in turn can lead to higher vulnerability
of the host to pathogen infection and colonization [28,40,127,179].
Changes in dietary composition of the GI tract of poultry during
feed withdrawal clearly have negative consequences on microbial
population.

It has been proposed that dietary fiber can be utilized prefer-
entially by Lactobacillus and Bifidobacteria species which leads to
the production of lactic acid and SCFA, resulting in the maintenance
of normal microbial populations, low pH and also prevents the
establishment of Salmonella in the GI tract [180–182]. Studies have
shown that feed deprivation can alter the hen’s immune system
and physiological status [183–189]. Laying hens also become more
susceptible to pathogen infection including Salmonella spp. with
molted hens shedding significantly more S. Enteritidis in their feces
[26,27,190], and higher levels of S. Enteritidis invasion in their
internal organs including liver, spleen, and ovaries [25,27,40]. These
findings suggested that complete removal of feed promotes path-
ogen invasion in molted hens.

Diets that regulate the passage rate by slowing it down could be
advantageous since this mechanism may prolong fermentation
which in turn increases metabolites needed to maintain GI tract
integrity. The altering of passage rate (flow rates) represents
changing the amount of digesta that passes a point along the GI
tract in a given time [191]. Passage rate may vary in different
segments of the GI tract and is dependent on the feed composition
and texture [192,193]. Adequate feed retention time is essential
especially in the ceca in order to encourage microbial degradation
for longer periods of time [194] leading to the production of
important metabolites, which subsequently maintain the integrity
and an optimal range of microbial diversity.

Several high-fiber dietary approaches have been utilized as
alternative molting diets to expedite an additional laying cycle for
hens. This includes insoluble plant fiber such as grape pomace
[195], cotton meal [196], wheat middling [197], and alfalfa
[30,41,179,185,186,198–203]. Studies by Tsukahara and Ushida
[204] demonstrated that feeding a plant protein-based diet to
chicks generated a higher concentration of SCFA than a diet based
on animal proteins and implied that the difference in SCFA
concentration was due to a higher concentration of the dietary fiber
component in the plant diet. In addition, it has been reported that
certain microorganisms that are indigenous to the GI tract of
poultry have the potential to hydrolyze dietary fiber into oligo-
saccharides and other low molecular weight carbohydrates which
leads to production of SCFA [48,49,127,205,206].

Alfalfa is one of the more extensively studied high-fiber dietary
sources in poultry. It has been widely used as animal feed and as
a high-fiber feed source [207–209]. It is relatively high in protein
exhibiting one of the slowest rates of passage (more than 24 h)
through the avian system and components such as saponins can
influence digestion and consumption of feed [210,211]. Alfalfa is
well balanced in amino acids and rich in vitamins, and contributes
to the desirable yellow color to carcasses and egg yolks when fed
to chickens as a dietary supplement [208,212]. In addition, alfalfa
may have advantages associated with the fermentation properties
by cecal microflora that are capable of limiting in vitro growth of
S. Typhimurium and has been shown to limit in vivo S. Enteritidis
colonization in laying hens [30,41,170,202,203]. An in vitro study
examined the fermentation of alfalfa and layer feed incubated with
chicken cecal content in rumen fluid using nitrocompounds and
indicated that both feed materials influenced SCFA production with
acetate being the predominant component [50]. It was observed
that incubation with the methane inhibitors nitroethanol and 2-
nitroproponal produced significantly higher propionate than
nitroethane, while layer feed produced more butyrate than alfalfa.
The addition of nitropropanol to layer feed incubated with cecal
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contents was suggested to promote gram-positive, saccharolytic
SCFA-producing bacteria especially Clostridium spp. which is
a predominant group in the ceca of chickens [57,213,214]. High-
fiber feed substrates (soybean meal, soybean hull, beet pulp, wheat
middlings, ground sorghum, cottonseed meal, alfalfa, and different
ratios of alfalfa and commercial layer ration) have also been
observed to influence microbial diversity and stimulate SCFA
production when incubated with chicken cecal inocula in vitro
[206]. While isobutyrate and isovalerate were barely detectable,
acetate production was pronounced, followed by propionate and
butyrate.

In order to derive maximum benefit from fermentable high-
fiber prebiotic sources, physical modification may also be necessary
to derive uniform particle size. Coarsely ground mash over whole
grain wheat has been demonstrated to be effective on the physio-
logical function on GI tract of broiler birds. It has been shown that
an increase in feed structure caused an increase in gizzard size
[215–218]. A reduction in gizzard pH and an increase in small
intestinal pH were observed with an increase of the grain particle
size [217,218]. The particle size of feed structure is also known to
influence Salmonella numbers [193]. It has been demonstrated that
pigs fed a coarse non-pelleted diet significantly exhibited an
increased number of anaerobic bacteria, increased concentration of
organic acids, and reduced pH in the stomach compared to fine
pelleted diets [193]. Furthermore, changes in these parameters as
well as a significant higher concentration of undissociated lactic
acid were presumably influential in reducing Salmonella population
in the gut of pigs.

Numerous studies have been carried out to evaluate the effects
of feed structure on performance of poultry [215,218–221]. In
previous reports [215,219–221], the addition of whole grains to
feed instead of pelleted compound feed was also shown to increase
feed conversion and growth of broilers. Furthermore, whole wheat
feeding significantly increased gizzard weight, increased retention
time, and reduced pH in gizzard contents compared to pellet fed
birds [219,222] which in turn decreased the Salmonella population.
In addition, uniform particle size was shown to contribute to the
development and integrity of the GI tract which subsequently
enhanced gut motility and backflow mechanisms in poultry
including reverse peristalsis from the cloaca to the ceca [223].
Alfalfa when fed in a crumble form appears to support microflora
that are accompanied by increased production of SCFA in a pattern
similar to a grain-based diet [179]. While feed removal resulted in
decreased fermentation capacity [30], the negative effect was
neutralized by hens fed alfalfa crumbles as acetate, propionate and
butyrate were observed to be the most pronounced SCFA in feces
and ceca [179].

6. Conclusions

The microbial diversity of the GI ecology plays an essential role
in the food animal industry and human medicine. A thorough
understanding of microbial interactions can be a valid tool to
prevent the environmental conditions that accompany manage-
ment practices suspected in proliferating foodborne pathogens.
Foodborne pathogens such as Salmonella possess the capability to
survive in external environments during transmission from one
host to the next [224]. The determination of microbial genetics and
physiology associated with these mechanisms could have great
potential for better control of pathogen colonization.

There have been attempts to use feed ingredients that are
conducive to the growth of beneficial GI tract bacteria as well as the
introduction of a bacterial population that favors optimal health
and nutrition in animals to promote normal microbial growth in GI
tract ecology [137]. A modulation of bacterial community in the GI
tract through the use of probiotics and prebiotics remains an active
research area and has shown great potential in reducing enter-
opathogens as well as enhancing the beneficial effects of normal
microflora including Lactobacilli and Bifidobacteria. Historically, in
vitro models, including CC-based studies, have been extensively
utilized to study the ruminant GI tract ecology. More effort is
needed to evaluate significant parameters of enteropathogens
including steady state, nutrient status, pH status, energy require-
ments, and direct comparisons of metabolic and genetic responses.
A better understanding of these indicators could assist in designing
more novel approaches to minimize the spread of Salmonella in the
food animal industry and decrease the consequences to human
health.
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